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Abstract-The possibility of using measurements of the dispersion of Rayleigh (surface) waves
propagating on pre-stressed, initially isotropic materials to determine the surface stress and gradients
in such materials is analytically investigated. Using a first-order perturbation formula for the
description of the acoustoelastic effect on Rayleigh waves. it is shown that knowledge of the
frequency dependence of the change in phase (or phase velocity) of the Rayleigh wave after
propagating a certain distance can, in theory, be used to determine the stress level at the surface of
the medium as well as its derivatives up to a given order. Basic questions concerning the uniqueness
of the inversion are addressed, and a formal method of inverting inhomogeneous bi-axial stress
distributions is presented. The effect of the range of frequencies included in the measurements is
discussed and illustrated with a numerical example. Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

The effect of an initial, possibly finite, deformation of a body on the equations governing
the propagation of small amplitude elastic waves in the body has been extensively analyzed,
dating back to the time of Cauchy (1828). The so-called acoustoelastic effect has since
emerged from such investigations. The acoustoelastic effect refers to the fact that an initial
deformation of a body causes a (small) change in the velocity of propagation of elastic
waves through the body. Accurate measurements of the stress-induced velocity changes
yield information which can, in some cases, lead to a determination of the stresses in the
body. Alternatively, one can make use of the fact that initial deformation (or stress) causes
an apparent anisotropy in an initially isotropic medium, destroying the degeneracy of shear
wave speeds. In stressed materials, therefore, two shear waves with different polarization
directions will, in general, propagate at different speeds. The difference in speed of two
orthogonally polarized shear waves is proportional to the difference in the principal stresses,
and the polarization directions of the two waves coincide, in initially isotropic media, to
the directions of the principal stresses. Because of its strong similarity to photoelasticity,
such a phenomenon has been called acoustoelasticity. The difference in speed of ortho­
gonally polarized shear waves causes the two waves, which may have been initially in phase,
to gradually develop a phase difference. The measurement of such a phase difference is
much easier than a direct measurement of velocity changes which are, in almost all cases,
extremely small. Hirao et al. (1992) have used resonance measurements instead of direct or
differential velocity measurements to increase accuracies for examination of specimens of
small thickness.

The acoustoelastic effect can be observed in the propagation of virtually all types of
elastic waves including bulk longitudinal and shear waves as well as guided surface (Ray­
leigh) and plate (Lamb) waves. Most approaches to predicting the effect of a pre-stress (or
deformation) on the propagation of small amplitude elastic waves start with a modified form
ofNavier's displacement equations of motion which include in them terms corresponding to
the initial deformation field, i.e., the initial strains. For homogeneous initial deformations
the resulting governing equations have constant coefficients and can be solved exactly for
various types of assumed solutions corresponding to, for example, plane longitudinal and
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shear waves, (Murnaghan (1951), Hughes and Kelley (1951), Toupin and Bernstein (1961),
Hayes and Rivlin (1961a), Tokuoka and Iwashimizu (1968), and Husson and Kino (1982))
as well as Love (Hayes and Rivlin (1961b)) and Rayleigh waves (Hirao, et al. (1981),
Tverdokhlebov (1983) and Husson (1985)). The effect of pre-stress on the existence and
propagation characteristics of interface waves in a layer embedded in an infinite space was
also recently examined (Sotiropoulos and Sifniotopoulos (1995)) as was the case of Rayleigh
wave propagation in a pre-stressed layer attached to an underlying pre-stressed half­
space (Ogden and Sotiropoulos (1995)). For non-uniform but spatially continuous initial
deformation however, the governing partial differential equations have spatially non-con­
stant coefficients and become exceedingly difficult to solve. For this reason, acoustoelasticity
theory is much less developed for such cases.

One of the few attempts at predicting the effects of a non-homogeneous initial defor­
mation on the propagation of surface waves is that of Hirao et al. (1981). They examined
cases of uniform and linear uniaxial initial stress distributions which varied only with depth
into the half space on which the surface wave was assumed to propagate. They also
performed experiments on bent plates to verify the theory. A major result of their work
was the theoretical and experimental verification of the fact that Rayleigh waves, which
are non dispersive on homogeneous, non-stressed or uniformly stressed media, become
dispersive when propagating on a medium which contains a non-uniform stress distribution.

Husson and Kino (1982) took a different approach to predicting the effect of a
nonhomogeneous initial deformation on the propagation of bulk waves. In their approach,
based on "energy perturbation methods", the medium with initial stress was considered a
perturbation of the corresponding stress free medium and an integral relation was obtained
relating the fields in the perturbed and unperturbed media. A first order Born approximation
(i.e., the particle velocity field distribution in the stressed medium is assumed to be the same
as that in the unstressed medium) was then made to allow the integral relation to be
simplified into an expression for the change of phase of the wave due to the presence of the
applied stress field. Husson (1985) later applied this work to the case of Rayleigh and Lamb
waves propagating on and in inhomogeneously stressed media. A major advantage of this
latter approach is that determination of the effect of the initial, possibly inhomogeneous,
stress field on the propagation of surface waves requires only information about the
gradients of the displacement field of the Rayleigh wave in the unstressed medium. This
latter work by Husson is the starting point of the present work.

In the next section, some brief background material will be given on the Husson-Kino
approach to acoustoelasticity of Rayleigh waves. In the sections following, the formal
method of inverting the dispersion information to obtain the stress distribution will be
detailed.

BACKGROUND

Husson (1985), based on work by Husson and Kino (1982), derived a formula for the
change of phase of a small amplitude Rayleigh wave due to propagation over the surface
of an initially stressed isotropic solid. He showed that a Rayleigh wave with initial particle
velocity and stress fields v and T respectively, would attain a phase shift of ¢(w) and hence
become vei

¢ and Te i
¢ after propagating a given distance over the surface of the material.

Denoting by ¢o the phase shift which would have been experienced by the wave had it
propagated on an equivalent stress-free medium, and by C5¢ the difference ¢ - ¢o, Husson
arrived at an expression for C5¢ in the form:

C5¢ = - ~ rG d V.
4P Jv (I)

In eqn (1), w denotes circular frequency and V denotes a volume enclosing the Rayleigh
wave, which may be a confined beam or an infinitely extended plane wave. We deal here
only with the case of a plane crested Rayleigh wave with fronts which are infinitely extended



Stress distribution determination 2439

in the direction perpendicular to the propagation direction. P denotes the average over one
time period of the power carried by the Rayleigh wave per unit width in the direction
perpendicular to the travel direction. As shown by Auld (1990), it can be expressed in terms
of the product of the group velocity of the Rayleigh wave and its kinetic energy density.
Using notation similar to that of Husson (1985), one can write

where the following quantities have been defined:

(
I I )]/2

K, == V 2 - V 2 '
() S

(2)

(3a)

(3b)

(3c)

(3d)

In eqns (3a-d), V", V, and VI denote the phase velocities of the Rayleigh, transverse
and longitudinal waves respectively in the unstressed medium. Po denotes the constant
density of the medium before application of the static initial deformation.

Finally, the integrand of eqn (1) can be expressed in terms of the initial deformation
gradients in the medium, the second (A, j.l) and third (l, m, n) order elastic constants of the
medium and the displacement gradients caused by the Rayleigh wave. Denoting by b i ,

i E {I, 2, 3} the components of the initial static displacements of the medium and by ai,

i E {I, 2, 3} the coordinates ofa material particle in the undeformed state, G can be expressed
by:

obm { }G == ~o (21+A)[A(a2' w) +B(a2' w) +C(a2, w)] + (A+m)D(a2, w) +mE(a2, w)
am

ob2 ,

+ -0 {(2/.+6j.l+4m)A(a2, w) + j.l[2D(a2' w) +E(a2, w)]}
a2

ob 3+ -,-" {(2A+6j.l+4m)B(a2,w)+j.l[2D(a2,w)+E(a2,w)]}
da3

obI
- ~~- {(n/2)[D(a2' w) +E(a2' w)] + (J.+2m-n)C(a2' w)},

oa]
(4)

where the functions A(a2, w) through E(a2' w) depend upon the gradients of the dis­
placement field of the Rayleigh wave when propagating on the equivalent unstressed
medium. We note that eqn (4) differs slightly from the expression originally given by
Husson (1985). We have verified through personal contact with Husson that an algebraic
error exists in the original expression. There are several typos in the original expressions
for the functions A through E, hence these functions are given in slightly rearranged and
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corrected form later (see eqn (7) and the Appendix). The second order elastic constants of
the medium are taken as the Lame constants A and /1, and the third order constants used
are those of Murnaghan, I, m and n. Summation over repeated subscripts is implied in (4)
and throughout.

In deriving eqn (4), the Rayleigh wave was assumed to propagate in the a3 direction
which, together with the a2 direction defines the sagittal plane which contains the pol­
arization vector of the Rayleigh wave. The coordinate al is perpendicular to the saggital
plane and consequently the al component of the Rayleigh wave displacement vanishes and
all fields are independent of a l • In addition, only the diagonal terms of the displacement
gradient tensor of the initial deformation have been taken into account. This implies that
eqn (4) is applicable only to cases where the initial shear deformation components vanish
throughout the region encountered by the Rayleigh wave. The presence of specific non­
diagonal terms of the initial displacement gradient tensor would cause the Rayleigh wave
to undergo additional phase changes during propagation. The original paper by Husson
and Kino (1982) examines in detail the effect of such terms. It should be noted that since
the Rayleigh wave propagates on a traction free surface, for large enough frequencies where
the wave is confined to a small region about the surface, eqn (4) will be approximately true
even if there is initial shear deformation in the interior of the solid. This follows from the
fact that those components of shear which affect the Rayleigh wave would necessarily
vanish at and, due to continuity, near the free surface.

Equations (1--4) allow the solution of the so-called direct problem; i.e., that of pre­
dicting the change of phase of a Rayleigh wave caused by an initial deformation (or stress).
Before presenting an example of the application of the formula, it is specialized to some
specific cases which will be of importance in later developments. First of all, the Rayleigh
wave is assumed to propagate in the a3 direction over a length L o, and to have uniform
fields in the al direction. If a uniaxial normal stress which varies only with depth is applied
along the a 3 axis, «(T33(a2)), and Hooke's law is used to relate the initial stresses and strains,
the initial displacement gradients assume the forms,

cb3 ).+/1
- = . (T,1
ca3 /1(3..1 +2/1) ..

obI ab 2 A
-=-~-= - (Tn·
cal oa2 2/1(3A +2/1) .

Under this assumption, eqn (I) reduces to the form:

(5)

(6)

where summation over the repeated index i E {I, ... , 5} is implied here and throughout. To
make the notation more compact, the original functions A(a2 , w) through E(a 2 , w) appear­
ing in (4) have been relabelled Fi(a2, W)iE {l, ... , 5}. This allows use of the summation
convention to imply summation over repeated subscripts. Each of these functions can be
written in the general form:

(7)

where the 15 constantshi' i E {I, ... , 5}, j E {I, 2, 3} are given in the Appendix.
The constants IX)I appearing in eqn (6) are given by
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(8)

The notation (j<jJ,ji(W) is used in eqn (6) and throughout to mean the possibly frequency
dependent change in phase experienced by a Rayleigh wave propagating in the a, direction
caused by a uniaxial stress applied in the ap direction. The notation b<jJ'(P+Y) is used to
denote the change in phase experienced by a Rayleigh wave propagating in the aa direction
caused by a bi-axial stress applied with (orthogonal) principal directions along the ap and
a, directions.

For an applied uniaxial stress in the a 1 direction and propagation in the a3 direction,
the initial displacement gradients can be expressed as

cb l }.+/l
-= 0"11
cal /l(3J.+ 2/l)

obz ob 3 I,
-=-= - 0")1oaz oa3 2/l(3A+2/l)·

Equation (1) then specializes to

(9)

(10)

where five additional constants, rxt, depending only on the second and third order elastic
constants of the medium, are given by

(11 )

Two very important aspects of eqn (1) and its specialization in eqns (6) and (10) are:
(1) in this first order treatment of the acoustoelastic effect, the change of phase is a linear
functional of the applied stress distribution; and (2) the phase of the wave is affected by
the stress both parallel and perpendicular to the direction of propagation. These two facts
will be shown to introduce an inherent difficulty when trying to determine a bi-axial stress
field using dispersion data for propagation in a single direction.
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Fig. I. (a) Plots of the relative change in phase velocity ofa surface wave propagating perpendicularly
to an initial applied stress distribution which varies linearly with depth. Dashed line, from Hirao et
al. (1981); solid line, present theory eqn (10); open circles, experiments from Hirao et al. (1981).

(b) Same as (a), but with slightly adjusted third order elastic constants. Solid line, present theory;
open circles, experiments from Hirao et al. (1981).

As an example of the application of the above fonnulae, we ran a case similar to that
run by Hirao et al. (1981). The results, corresponding to the propagation of a Rayleigh
wave on a mild steel bar with elastic constants, A = 107.4, f..l = 81.9, I = - 206.5, m = - 600
and n = - 800 [GPa], containing a uniaxial, linear stress distribution perpendicular to the
propagation direction are shown in Fig. (la). The initial static stress was assumed in the
form, 0"11 (a2) = 0']1 (1 - 2a2/H) with 0'11 = 0.06375 [GPa] and H = 10 mm. The initial stress
thus equals 0' I I when a2 = 0, it vanishes when a2 = H/2 and it equals - 0' II when a2 = H.
This is the same stress distribution which would be obtained if a plate of thickness H were
bent by couples applied to the ends, which Hirao et al. (1981) used to compare theory to
experiment.

Shown in Fig. la is a plot of the change in phase velocity vs wavenumber (k == w/Voo

i.e., the wavenumber of the Rayleigh wave on an unstressed medium) times plate thickness,
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H. The results for the change in phase can, for propagation in the a3 direction, be converted
to change in phase velocity using the formula:

(12)

where £33 denotes the surface strain in the direction of propagation. In both the current
approach and that of Hirao et al., the resulting expression for the change of phase velocity
can be written in the form

(13)

for suitable values of the constants 130 and 131' The overbar denotes values evaluated at the
free surface, a2 = O. As can be seen by eqn (13), the phase velocity of the surface wave is
affected by both the surface stress and its gradient at the surface. The non-uniform initial
stress distribution is seen to cause dispersion of the Rayleigh wave via the second term in
(13).

Figure la shows that there is a slight discrepancy between the two approaches for low
frequency, the cause of which we are not exactly sure at this point. The values predicted by
the two theories become closer with increasing frequency. Also shown in Fig. (1a) as open
circles are the experimental data reported by Hirao et al. (1981). As mentioned by Hirao
et al., the accuracy ofdetermining the third order elastic constants is not great. We therefore
reran our analysis with slightly modified values of the third order elastic constants. The
result for 1= -191.5, m = -585.0 and n = -800 is shown in Fig. Ib along with the
experimental data of Hirao et al. Using this modified set of elastic constants, which
corresponds to a 7.5% in one of the constants determined by Hirao et al. (their v2), the
theoretical data from the current theory is seen to match the experimental data remarkably
well.

INVERSE PROBLEM

Uniaxial stress states
The formula, eqn (1), and its specializations in eqns (6) and (10) relate the change in

phase of the Rayleigh wave to the applied or residual stress in the medium. Considering
the change in phase (as a function of frequency) as measurable by suitable experimental
means, the left hand sides of the equations represent known functions of frequency. Equa­
tions (6) and (10) can then be classified as Fredholm integral equations of the first kind for
the unknown stress distributions 0'3ia2) or 0'11 (a2) respectively (Hochstadt (1989»). While
the theory of solving such equations is relatively well developed for certain types of equa­
tions, such as equations of the second kind, or for specific types of kernels, in general, not
much can be said concerning the general kernels which appear in these equations (see eqn
(7)). Furthermore, any solutions obtained from rigorous mathematical methods are unlikely
to be of much use in the practical solution of these equations since the left hand side of
these equations will not in general be known for all frequencies. Rather, the change of
phase of the Rayleigh wave will invariably be measured over a finite frequency range. A
very important practical question therefore is whether eqns (6) and (10) can be used to
estimate the stress distributions for limited data on the (presumably known) functions
(5<jJ'P(w).

In this section an attempt is made at inversion of these equations by a method similar
to Enskog's method of solving Fredholm equations of the second kind (Tricomi (1985»).
The essence of the method is to assume that the unknown function under the integral can
be expanded in a series of functions of suitable form with a-priori unknown coefficients.
Substitution of the assumed series under the integral and subsequent term-by-term inte­
gration (if possible) converts the integral into another series of functions. If the known
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inhomogeneous term (i.e., the left hand sides in eqns (6) and (10)) can be expanded uniquely
in a series of these resulting functions, one has only to match coefficients of the expansions
to determine the coefficients of the original series expansion of the unknown function.

Proceeding, assume that a uniaxial normal stress a33(a2) exists in a medium and that
this stress distribution can be sufficiently approximated by a truncated Maclaurin series
(i.e., an N'h order Maclaurin polynomial) about the free surface, a2 = 0 in the form,

N

a33(a2) = L a~3a~
n~O

(14)

with the general coefficient, a~3, being proportional to the derivative of a33 at the surface,
(dna3(0)/daD/n! While certainly not all functions will admit an accurate representation of
the form given in (14), Weierstrass' theorem (Achieser (1992)) proves that any continuous
function can be approximated on a finite interval to any degree of accuracy by a sufficiently
high order polynomial cf the form given in (14). If the initial stress is continuous and
vanishes beyond a certain depth, Weierstrass' theorem can be invoked to show that an
expansion of the form given in (14) is, for some possibly large value of N, an accurate
approximation.

Assuming propagation along the applied stress direction (a 3 ) the expansion, eqn (14),
is substituted into egn (6) to obtain the change in phase of the wave. When this is done
there results

(15)

where again, summation over i E {l, ... ,5} is implied. An interchange of integration and
summation was performed to arrive at eqn (15), which is valid since there is a finite number
of terms in the summation. Note that since P is proportional to w (see eqn (2)), the term
(P/w) on the left is independent of frequency.

Using the expression for the F,(a2 , w) given in eqn (7), and the well known result
(Gradshteyn and Ryzhik (1994)),

(16)

where r(n+ 1) = n! represents the Gamma function, the integrals appearing in eqn (15)
can be written for arbitrary n in the form

(17)

where the C", i E {l, ... , 5} ; n E {O, ... , N} have been defined as:

(18)

with the fifteen constants,j;j, given in the Appendix. With these definitions, eqn (15) can be
written in the compact form:
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(19)

It can be seen from eqn (19) that substitution of the Maclaurin series expansion for
the unknown stress distribution leads to a series of functions of powers of frequency w.
Recall that the quantity (P/w) is actually independent of frequency. Of prime importance
is the fact that the resulting series of functions ofware linearly independent. The Wronskian
of any two of these functions, say l/wn,-I and l/wn,-I, for arbitrary integers n 1 and n2

equals ±(n1-n2)w l - Cn ,+n,) and hence vanishes only if nl = n2. This allows us to expand
suitable functions uniquely in terms of this set of functions. As discussed by Tricomi (1985),
the only time Enskog's method fails is when the original (lineary independent) series of
functions are mapped by the integral operator into a linearly dependent set. This is not the
case for the integral operators defined in eqns (6) and (10).

It should at this point be noted, however, that not all functions of ware expandable
in terms of the functions given in eqn (19). That is, those functions are not complete in,
say, the space of square integrable or even continuous functions on WE [0,(0). Math­
ematically, one of the reasons that the resulting functions of ware not complete (again, in
some space) is the fact that the original series expansion of the stress was also in terms of
a non-complete (finite) set of functions. Physically, the fact that the measured b¢(w) may
not be expandable in terms of the functions in eqn (19) would signify that the stress
distribution in the medium is not expandable in the series shown in eqn (14). As mentioned
earlier, however, any continuous function can be approximated, on any finite interval and
to any degree of approximation by a polynomial of the form given in (14). If the initial
stress is continuous, therefore, the measured b¢(w) will be expressible in the form of eqn
(19).

The change of phase, i5¢3\W) (or equivalently, the change in phase velocity) of the
wave can, in principle, be measured experimentally as a function of frequency (Allen and
Cooper (1983)). Assuming that this is done, one can find the coefficients, <I>~3, of an
expansion of the form:

or, more compactly,

(20a)

4(P/W)r5¢33(W)

La
(20b)

which will give a best fit to the experimentally obtained data. One could, of course, solve
explicitly for the coefficients <I>~3 by equating the expansion, eqn (20a), to the experimentally
obtained data for N + I frequencies, Wb k E {I, 2, ... , N + I}. The effect of slight measure­
ment errors will, however, be greatly reduced if some type ofleast squares, non-linear curve
fitting algorithm is used to determine the expansion coefficients, <I>~3 from the measured
b¢3\W) data using a redundant number of frequencies.

In any case, assuming that the coefficients <I>~ 3 for n E {- I, ... , N - I} have been
obtained, eqns (19) and (20) give a relation between the then known coefficients, <I>~3 and
the sought after stress expansion coefficients, (J~ 3n E {O, ... , N}. Comparing terms of like
powers of w in the expansions (19) and (20b), one has

33 <I>~~ 1
(J =-- (nosumonn),

n IX! C in
(21)

where the summation convention applies to the denominator. Equation (21) gives the
formal relation between the experimentally obtained coefficients, <I>~~ I, and the gradients
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ofthe applied/residual stress field, 0";;3. It was obtained under the assumption of propagation
along the direction of the uniaxial stress 0"33(a2)' Equation (21) can in principle be used to
determine the surface stress, 0"6 3 as well as any of the gradients of the stress at the surface
so long as the appropriate coefficient, Q~ == a]1 Cin =1= O.

It is important to note that the range of frequencies included in the experimental data
are of critical importance to the success of the stress determination. This can be seen by
direct examination of eqn (19). In fact, using the relation between ,1V/Vo and (j¢>33, eqn
(12), in addition to eqn (19) and the relation e33 = (1/£)6'33 = (1/£)0";3, it can be seen
that:

(22)

i.e., only the value of the surface stress affects the phase velocity of the Rayleigh wave at
high enough frequencies. Examining eqn (20a), it can be seen that the choice of frequency
range greatly affects which coefficients, cI>;;3, contribute to the expansion. If only very large
frequencies are used, cI>~31 will dominate the series, whereas for only small frequencies, the
highest index terms will dominate.

As an illustration of the importance of the frequency range of the experimental
measurements, we present two examples. Both cases correspond to propagation along a
linearly applied stress oftheforrn, 0"33(aZ) = Co + dOa2, with Co = 62.5 [MPa] and do = -62.5
[MPa/mm]. We then numerically calculated the change in phase as a function offrequency
over two ranges: 0.2-20 MHz and 4.0--20 MHz. This corresponds to what would have been
measured experimentally. In addition, we calculated the (j¢>33(W) curves, over the same
two frequency ranges, for a number of other uniaxial linear distributions of the form
0"33(a2) = c+daz for constants c and d in a suitable range, including the previously run
values of Co = 62.5 [MPa] and do = -62.5 [MPa/mm]. These (j¢>33(W) curves were then
compared to the original curve by summing the squares of the differences between the two
curves at each frequency in the appropriate interval. When c and d equal 62.5 [MPa] and
-62.5 [MPa/mm], respectively, the error thus calculated will be zero. For c =1= 62.5 [MPa]
and d =1= -62.5 [MPa/mm], however, the (j¢>33(W) curves will in general differ and thus give
rise to a non-zero error. The resulting error surfaces, normalized to unity maximum, are
plotted for the two frequency ranges in Figs 2 and 3 respectively.

300

150

% Deviation from do

o
-150

-300150
o

-150
-300

% Deviation from Co 300

Fig. 2. Sum of square residual surface for propagation of a surface wave on a solid with initial stress
which varies as O"J3(a2) = 62.5 [MPa]-62.5 [MPa/mm]. Co = 62.5 is the correct value of surface
stress. and do = - 62.5 [MPa/mm] is the correct value of surface stress gradient. Frequency range

used in summing residuals was 0.2-20.0 MHz.
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Fig. 3. Same as Fig. 2, but frequency range used in summing residuals was 4.0-20.0 MHz.
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On examining Fig. 2 it can be seen that, if a large enough frequency range is included
in the measurement, unique values of c and d can be obtained, since even slight changes in
c and/or d from Co and do will cause the resulting l5¢33(W) curves to change as well. Figure
3 illustrates, however, that if too small a frequency range is included, the error surface
begins to develop a valley of relative minima, meaning that, over the measured frequency
range, there are a loci of values (c, d) which give essentially the same l5¢33(W) curves. In this
case, while the value of surface stress c is still determined fairly accurately, its gradient d
can vary wildly depending on its initial guess. This state of affairs resulted from the fact
that we removed the low end of the frequency information in generating Fig. 3 from Fig.
2, and is a manifestation of the fact that the remaining high frequency information is more
sensitive to the surface stress than to its gradient. Of course, this is physically due to the
fact that the Rayleigh wave fields become confined near the surface for large frequencies.

We close this section with the observation that although the phase change information
l5¢33(W) was used to calculate the coefficients of the stress, (J~3, one could equally well have
used l5¢13(W). That is, one could use the phase change information for a wave which
propagates perpendicularly to the applied stress with a corresponding change in the con­
stants which appear in the formulae a)1 --> :x;.

Biaxial stress states
For the uniaxial stress state examined above, it was found that measurement of the

change of phase of the Rayleigh wave as a function of frequency for propagation along (or
perpendicular to) the direction of applied stress was sufficient, in theory, to determine the
stress state, provided the stress distribution admitted a representation in the form of eqn
(14). In this section it will be seen that this is not true for biaxial stress states. Additional
information will be needed in this case.

Assume that, in addition to (J3la2) there exists in the medium a stress (Jll(a2). The two
distributions together define a state of bi-axial stress in the medium. Because the change in
phase is a linear functional of the applied stress, the effect of this bi-axial stress state is the
sum of the effects of each stress state individually. In the notation explained previously, we
can write

(23a)

(23b)

From eqns (23), (6) and (10), the change of phase of a Rayleigh wave propagating in
the a3 direction would be given by
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Fig. 4. Sum of square residuals surface for propagation of a surface wave in the GJ direction on a
solid with initial, uniform biaxial stress with principal stresses <1 ,1 = 25.0 [MPa], <133 = 12.5 [MPa].

4(P/w)b"'3(1 + 3) (w) IV C 0"33 'I C. 0"11
'f' I'\"' mn+-l,\", mn- = rx, L. --- rx, L. --,-
L o n~O wn - I n~O wn

-

(24)

If the experimentally obtained b¢3(' +3)(W) data are fit to an expansion of the form

4(P/w)b¢3(l +3)(W) 'I-I <D~(l+3)

- = L:-
L o n~ -I wn

(25)

and the terms of like powers in ware compared in (24) and (25), there results:

(26)

The single set of coefficients, <D~( 1+ 3), are seen from eqn (26) to be insufficient to obtain
both sets of coefficients, 0"~3 and O"~ 1 • Mathematically, the reason is simple; there are two
unknowns and only one equation for any given n. Physically, this occurrence is due to the
fact that the change of phase is affected by the stress both parallel and perpendicular to the
propagation direction, albeit with different sensitivities.

Figure 4 is a numerical example illustrating the effect of varying the values of 0"11 and
0"33 on the change of phase curve, b¢3(l+3)(W). Shown is the sum of the square residuals, as
described earlier in conjunction with Fig. 2, for the case of a uniform, bi-axially applied
stress field of 0"1l = 25 [MPa] and 0"33 = 12.5 [MPa]. The ordinate corresponds to the sum
of the (square of the) differences between the correct change of phase curve obtained for
0"1l = 25.0 [MPa] and 0"33 = 12.5 [MPa] and the change of phase curve obtained using the
0"11 and 0"33 values corresponding to the ordinate. Due to the homogeneous nature of
the initial deformation, the change of phase is actually frequency independent for any
propagation direction.

As can be inferred from the prominent valley of minima in Fig. 4, the change of phase
as a function of frequency is unaltered even if 0"1l and 0"33 deviate from their correct values
of 25 and 12.5 MPa respectively, so long as the relation /310" 11 + /32(J33 = const (for constants
/31 and /32) is satisfied. The constants /31 and /32 which solely determine the slope of the valley
in the 0"11-0"33 plane are dependent only upon the second and third order elastic constants
of the medium. It should be noted that the apparent spikes of minima along the general
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Fig. 5. Same as Fig. 4, but for propagation of the surface wave in the G 1 direction.

valley of minima are a result of the grid selection for plotting. The actual error will be zero
along the entire line defined by 131a II +1320'33 = const.

To determine the change of phase which would be experienced by a Rayleigh wave
propagating in the al direction on the bi-axially stressed medium, one only has to inter­
change the roles of the constants exl and ext in eqn (24). This results in

_ 4(P/w)b¢l(1+3)(W) = £(exta~3 +ex~a~I)C;n,

L o n~O wn - I
(27)

and the coefficients in the expansion of -4Pb¢I(I+3 l / wLo similar to eqn (25) would yield
the additional relations

(28)

One can see by comparing eqns (26) and (28) that the effect of propagating the
Rayleigh wave in the a I direction is to switch the multipliers cd' from 0'33 to a II since allis
then parallel to the applied stress. There is a corresponding switch of the ext multipliers
from all to 0'33'

The same conclusions which were drawn concerning the dependence of b¢3(i+3l(W) on
all and 0'33 (for propagation along a3) hold for b¢I(l+3l(W) and propagation along al . The
corresponding sum of residual plots is shown in Fig. 5. In this case, the equation of the
valley of minima in the O'W0'33 plane is given by 1320'11 +1310'33 = const, i.e., the coefficients
are merely switched. This represents a 'reflection' (or mirror image) of the original valley
of minima through the plane containing the 45 degree line of the O'W0'33 plane. This
phenomenon can be seen by comparing Figs 4 and 5. The non-uniqueness of b¢I(I+3) to
individual values of a II and 0'33 is also evident from this plot.

While the change of phase data from propagation in the a3 or a l directions alone are
not sufficient to reconstruct the coefficients of the biaxial stress state, a combination of the
two sets of data, represented by eqns (26) and (28), gives a set of two equations in two
unknowns for any value of n. The equations can be written in matrix form,

[
Q~

Q; (29)

where Q~ == a)lC;n and Q; == extcin- These equations can be solved to yield the expansion
coefficients of the stresses in terms of the fitted coefficients <I>?,(l-t-3) and <I>~(1 + 3), provided
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Fig. 6. Combined sum of square residual surface for surface wave propagation along Q, and Q 3

directions on a solid with uniform biaxial stress distribution with principal stresses 0'11 = 25.0 [MPa],
0"13 = 12.5 [MPa].

(Q;)2 -# (Q ~)2. If this condition is met, the stress expansion coefficients follow from (29)
as

(30a)

(30b)

In principle, eqns (30a) and (30b) give the required expansion coefficients for the stress
distribution in the sample.

As an illustration of the effect of using information from propagation in both the Gl

and G 3 directions, we present Fig. 6. This sum of residual surface, which results from
simultaneously computing the errors in t5¢3(1+3) and t5¢I(I+3) due to changing values of 0"11

and 0"33 from 25.0 and 12.5 [MPa] respectively, is simply the sum of the previous two
surfaces, re-normalized to unity maximum. As can be seen from this surface, there is now
a single, unique minimum for which the deviation in the change of phase curves will vanish.
This shows numerically that the inversion will be sensitive to changes in either or both
values of stress and, therefore, that the inversion will, in principle, be unique. Of particular
noteworthiness is the lack of any adjacent local minima over the relatively large range of
0"11 and 0"33 displayed in the figure. Although the numerical example presented was for a
uniform biaxial stress, it follows from eqns (30a,b), that the inversion will be unique for
stress fields which vary as any power of G2 or linear combinations of such functions so long
as the condition, (Q;)2 -# (QD2 is satisfied.

DISCUSSION AND CONCLUSIONS

As a closing note, we give a physical interpretation to the condition (Q;)2 = (Q~)2

which would cause the above results to break down for that particular n. By examining the
definitions of Q~ and Q; it can be seen that the condition will occur if the effect of a stress
applied perpendicular to the propagation direction (i.e., Q~) has the same effect on the
change of phase of the wave as a stress applied in the direction of propagation (i.e., QII). A
sufficient, although not necessary condition for this to happen is for a; = a)1 for all
i E {I, ... , 5}. This condition was checked for several alloys of aluminum and for mild steel.
It was not satisfied for any of the materials checked. We also note that all of the results
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presented here should be considered strictly formal at this point since there is little or
no experimental data upon which to test the robustness of the inversion algorithms to
experimental errors.
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APPENDIX

Constants}" appearing in eqn (7).


